Library

Library

Extensive scientific research is currently being conducted in fields deemed important to the mission of SpaceBorn Unitied. A partial bibliography is provided here to help promote research and collegiality in these emerging fields. The following research articles have been published in peer-reviewed journals and represent a sample of the review being conducted by our organization. This is not an exhaustive list. 

 

SN References
1 Aceto, Jessica, Nourizadeh-Lillabadi, Rasoul, Bradamante, Silvia, Maier, Jeanette A, Alestrom, Peter, Loon, Jack Jwa van and Muller, Marc. “Effects of microgravity simulation on zebrafish transcriptomes and bone physiology-exposure starting at 5 days post fertilization..” NPJ microgravity 2, 2016, p. 16010., ISSN 2373-8065, https://dx.doi.org/10.1038/npjmgrav.2016.10 
2 Agnew, James W, Fibuch, Eugene E and Hubbard, John D. “Anesthesia during and after exposure to microgravity..” Aviation, space, and environmental medicine 75.7, 2004, pp. 571-580., ISSN 0095-6562  
3 Aimar, C, Bautz, A, Durand, D, Membre, H, Chardard, D, Gualandris-Parisot, L, Husson, D and Dournon, C. “Microgravity and hypergravity effects on fertilization of the salamander Pleurodeles waltl (urodele amphibian)..” Biology of reproduction 63.2, 2000, pp. 551-558., ISSN 0006-3363, https://dx.doi.org/10.1095/biolreprod63.2.551 
4 Alberts, J R and Ronca, A E. “Rat pregnancy and parturition survive spaceflight challenge: new considerations of developmental consequences..” Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology 4.2, 1997, ISSN 1077-9248 
5 Amann R. P., Deaver D. R., Zirkin B. R., Grills G. S., Sapp W. J., Veeramachaneni D. N., Clemens J. W., Banerjee S. D., Folmer J., Gruppi C. M., et al. Effects of microgravity or simulated launch on testicular function in rats. Journal of applied physiology (Bethesda, Md.: 1985), 1992, vol. 73, 2 suppl, pp. 174S-185S.
6 An Interdisciplinary Guide on Radiation and Human Space Flight. (2016). 16th ed. [ebook] NASA Human Research Program Engagement and Communications. Available at: https://www.nasa.gov/sites/default/files/atoms/files/nasa_space_radiation_ebook_0.pdf [Accessed 5 May. 2019].  
7 Arena, C.Á., Micco, V.D., Macaeva, E., & Quintens, R. (2014). Space Radiation Effects on Plant and Mammalian Cells.  
8 Barghouty, AF, and SA Thibeault. The Exploration Atmospheres Working Group’s Report on Space Radiation Shielding Materials. no. 214604, 2006, https://ntrs.nasa.gov/search.jsp?R=20070009850. 
9 Bassano, E., et al. “IRENE – Italian Re-Entry Nacelle for Microgravity Experiments.” 62nd International Astronautical Congress 2011, IAC 2011, vol. 1, no. September 2014, 2011, pp. 858–66, doi:10.13140/2.1.3811.2642. 
10 Berger, T., Burmeister, S., Matthiä, D., Przybyla, B., Reitz, G., Bilski, P., Hajek, M., Sihver, L., Szabo, J., Ambrozova, I., Vanhavere, F., Gaza, R., Semones, E., Yukihara, E., Benton, E., Uchihori, Y., Kodaira, S., Kitamura, H. and Boehme, M. (2017). DOSIS & DOSIS 3D: Radiation 122  
11 Besova N. V., Savel’ev S. V., Chernikov V. P. Vlijanie nevesomosti na amfibij. Skelet i mineral’nyj obmen. Bjulleten’ jeksperimental’noj biologii i mediciny, 1993, vol. 116, no. 7, c. 90-92.
12 Beysens, Daniel A., and Jack J.W. A. van Loon. Generation and Applications of Extra-Terrestrial Environments on Earth, 2015, pp. 1–318., doi:10.13052/rp-9788793237544.   
13 Boada, M, Perez-Poch, A, Ballester, M, García-Monclús, S, González, D V, García, S, Barri, P N and Veiga, A. “Microgravity effects on frozen human sperm samples..” Journal of assisted reproduction and genetics 37.9, 2020, pp. 2249-2257., ISSN 1573-7330, https://dx.doi.org/10.1007/s10815-020-01877-5 
14 Bochang, Tang, and Zhao Huiguang. “Four Decades’ Development of China’s Recoverable Satellites.” Aerospace China, vol. 17, no. 1, 2016, pp. 42–51, http://www.aerospacechina.org/EN/abstract/abstract104.shtml. 
15 Borkenhagen, R H. “Pregnancy and Beyond Part II: Temperature Extremes and High Altitude..” Canadian family physician Medecin de famille canadien 34, 1988, pp. 947-950., ISSN 0008-350X 
16 Borkenhagen, R H. “Pregnancy and Beyond Part III: Cosmic Radiation..” Canadian family physician Medecin de famille canadien 34, 1988, pp. 1217-1220., ISSN 0008-350X 
17 Borkenhagen, R H. “Pregnancy and Beyond Part IV: Microgravity..” Canadian family physician Medecin de famille canadien 34, 1988, pp. 1461-1467., ISSN 0008-350X 
18 Borkenhagen, R H. “Pregnancy and beyond: environmental frontiers..” Canadian family physician Medecin de famille canadien 34, 1988, pp. 681-685., ISSN 0008-350X 
19 Boyle, R. F., and R. G. Ross. Overview of NASA Space Cryocooler Programs. 2003, pp. 1037–44, doi:10.1063/1.1472126. 
20 Briggs, Rosalind, et al. “Can You Ever Collect Too Many Oocytes?” Human Reproduction, vol. 30, no. 1, 2015, pp. 81–87, doi:10.1093/humrep/deu272. 
21 Brinckmann, E. “ESA-Built Hardware: MCS and Biolab.” Utilisation of the International Space Station, Proceedings of 2nd European Symposium, edited by A. Wilson, 1999, pp. 387–97, http://adsabs.harvard.edu/full/1999ESASP.433..387B. 
22 Brinckmann, E., and P. Schiller. “Experiments with Small Animals in Biolab and EMCS on the International Space Station.” Advances in Space Research, vol. 30, no. 4, 2002, pp. 809–14, doi:10.1016/S0273-1177(02)00401-5. 
23 Brinckmann, Enno B. T. Advances in Space Biology and Medicine. “New Facilities and Instruments for Developmental Biology Research in Space.” Developmental Biology Research in Space, vol. 9, Elsevier, 2003, pp. 253–80, doi:https://doi.org/10.1016/S1569-2574(03)09010-5. 
24 Broderick, Timothy J, Privitera, Mary Beth, Parazynski, Scott E and Cuttino, Marsh. “Simulated hand-assisted laparoscopic surgery (HALS) in microgravity..” Journal of laparoendoscopic & advanced surgical techniques. Part A15.2, 2005, pp. 145-148., ISSN 1092-6429, https://dx.doi.org/10.1089/lap.2005.15.145  
25 Campbell, M R et al. “Surgical instrument restraint in weightlessness.” Aviation, space, and environmental medicine vol. 72,10 (2001): 871-6.  
26 Campbell, M R, Billica, R D and Johnston, S L. “Animal surgery in microgravity..” Aviation, space, and environmental medicine 64.1, 1993, pp. 58-62., ISSN 0095-6562  
27 Campbell, M R, Kirkpatrick, A W, Billica, R D, Johnston, S L, Jennings, R, Short, D, Hamilton, D and Dulchavsky, S A. “Endoscopic surgery in weightlessness: the investigation of basic principles for surgery in space..” Surgical endoscopy 15.12, 2001, pp. 1413-1418., ISSN 1432-2218, https://dx.doi.org/10.1007/s004640080178  
28 Campbell, M R, Williams, David R, Buckey, Jay C and Kirkpatrick, Andrew W. “Animal surgery during spaceflight on the Neurolab Shuttle mission..” Aviation, space, and environmental medicine 76.6, 2005, pp. 589-593., ISSN 0095-6562  
29 Campbell, M R. “A Review of Surgical Care in space” Journal of the American College of Surgeons, vol. 194, no. 6, 2002, pp. 802–812., doi:10.1016/s1072-7515(02)01145-6.   
30 Carandente, Valerio, et al. “A Study on Earth Re-Entry Capsules with Deployable Aerobrakes for Recoverable Microgravity Experiments.” Microgravity Science and Technology, vol. 27, no. 3, 2015, pp. 181–91, doi:10.1007/s12217-015-9430-4. 
31 CDC. Radiation Recommendation for Embryos. https://www.cdc.gov/nceh/radiation/emergencies/prenatalphysician.htm#:~:text=Radiation exposure to a fetus&text=Although radiation doses to a,than 0.1 gray (Gy). Accessed 2 June 2020. 
32 Chancellor, Jeffery C., et al. ‘Limitations in Predicting the Space Radiation Health Risk for Exploration Astronauts’. Npj Microgravity, vol. 4, no. 1, 1, Nature Publishing Group, Apr. 2018, pp. 1–11. www.nature.com, doi:10.1038/s41526-018-0043-2.
33 Chronopoulou, Elpiniki, and Joyce C. Harper. “IVF Culture Media: Past, Present and Future.” Human Reproduction Update, vol. 21, no. 1, 2015, pp. 39–55, doi:10.1093/humupd/dmu040. 
34 Chung, Yu Hsiang, et al. “Microwells Support High-Resolution Time-Lapse Imaging and Development of Preimplanted Mouse Embryos.” Biomicrofluidics, vol. 9, no. 2, 2015, pp. 022407 1-10, doi:10.1063/1.4918642. 
35 Clement, Gilles, and Angie Bukley, editors. “Artificial Gravity.” The Space Technology Library, Microcosm and Springer, 2013, doi:10.1017/CBO9781107415324.004. 
36 Clement, Gilles, and Klaus Slenzka, editors. Fundamentals of Space Biology: Research on Cells, Animals, and Plants in Space. Microcosm and Springer, 2006, https://www.springer.com/gp/book/9780387331133. 
37 Crawford-Young, Susan J. ‘Effects of Microgravity on Cell Cytoskeleton and Embryogenesis’. The International Journal of Developmental Biology, vol. 50, no. 2–3, 2006, pp. 183–91. PubMed, doi:10.1387/ijdb.052077sc.
38 Cryocoolers for Space Applications Session. no. June, 2015, https://www.jlab.org/IR/Cryocooler_Fundamentals_Course_Notes/CEC-RGR_1_200dpi-final.pdf. 
39 Cucinotta, Francis A., et al. “Evaluating Shielding Effectiveness for Reducing Space Radiation Cancer Risks.” Radiation Measurements, vol. 41, no. 9–10, 2006, pp. 1173–85, doi:10.1016/j.radmeas.2006.03.011. 
40 Dadasheva O. A., Gur’eva T. S., Mednikova E. I., Dadasheva M. T., Sychev V. N. Gistogenez pecheni u embrionov yaponskogo perepela, razvivshikhsya v usloviyakh nevesomosti. Aviakosmicheskaya i ekologicheskaya meditsina, 2011, vol. 45, no. 2, pp. 30-34.
41 Dadasheva O. A., Gur’eva T. S., Sychev V. N., Dzhens G. Izuchenie protsessa okosteneniya skeleta verkhnikh i nizhnikh konechnostey embrionov yaponskogo perepela, razvivshikhsya v usloviyakh kosmicheskogo poleta. Kosmicheskaya biologiya i aviakosmicheskaya meditsina, 1993, vol. 32, no. 3, pp. 38-41.
42 Dadasheva O. A., Gur’eva T. S., Sychev V. N., Mednikova E. I., Filatova A. V., Komissarova D.V. Osobennosti razvitiya spinnogo mozga u embrionov i ptentsov yaponskogo perepela v usloviyakh kosmicheskogo poleta. Aviakosmicheskaya i ekologicheskaya meditsina, 2013, vol. 47, no. 5, pp. 3-6.
43 Dalton, Bonnie P., et al. “Life Sciences Research in the Centrifuge Accommodation Module of the International Space Station.” 30th International Conference on Environmental Systems, SAE Technical Paper Series, 2000, doi:10.4271/2000-01-2247. 
44 Dawson, David L. “On the practicality of emergency surgery during long-duration space missions..” Aviation, space, and environmental medicine 79.7, 2008, pp. 712-713., ISSN 0095-6562, https://dx.doi.org/10.3357/asem.2291.2008  
45 De Los Santos, M. J., et al. ESHRE Guidelines for Good Practice in IVF Laboratories. no. December, 2015, https://www.eshre.eu/Guidelines-and-Legal/Guidelines/Revised-guidelines-for-good-practice-in-IVF-laboratories-(2015). 
46 De Mazière A., Gonzalez-Jurado J., Reijnen M., Narraway J., Ubbels G. A. Transient effects of microgravity on early embryos of Xenopus laevis. Advances in space research, 1996, vol. 17 (6-7), pp. 219-223. DOI: 10.1016/0273-1177(95)00638-u
47 Desai, Prasun N., et al. “Entry, Descent, and Landing Operations Analysis for the Stardust Entry Capsule.” Journal of Spacecraft and Rockets, vol. 45, no. 6, 2008, pp. 1262–68, doi:10.2514/1.37090. 
48 Drudi, Laura, et al. “Surgery in Space: Where Are We at Now?” Acta Astronautica, vol. 79, 2012, pp. 61–66., doi:10.1016/j.actaastro.2012.04.014.   
49 Duan, Enkui, and Mian Long, editors. Life Science in Space: Experiments on Board the SJ-10 Recoverable Satellite. Springer Singapore, 2019, doi:10.1007/978-981-13-6325-2. 
50 Dye, S. A., et al. “Wrapped Multilayer Insulation Design and Testing.” Cryogenics, vol. 64, Elsevier Ltd, 2014, pp. 100–04, doi:10.1016/j.cryogenics.2014.07.002. 
51 Eckart, Peter. “Spaceflight Life Support and Biospherics.” Spaceflight Life Support and Biospherics, Microcosm Press and Kluwer Academic Publishers, 1996, doi:10.1007/978-94-017-3038-9. 
52 Edwards, Matthew R. ‘Android Noahs and Embryo Arks: Ectogenesis in Global Catastrophe Survival and Space Colonization’. International Journal of Astrobiology, vol. 20, no. 2, Cambridge University Press, Apr. 2021, pp. 150–58. Cambridge University Press, doi:10.1017/S147355042100001X.
53 Engelmann, Ute, et al. “Sperm Motility Under Conditions of Weightlessness.” American Society of Andrology, vol. 13, no. 5, 1992, pp. 433–36, https://doi.org/10.1002/j.1939-4640.1992.tb03339.x. 
54 Frey, R., et al. “Emergency Medical Care on Space Stations.” Acta Astronautica, vol. 7, no. 12, 1980, pp. 1483–1484., doi:10.1016/0094-5765(80)90025-9.   
55 Gadomski, Benjamin C, McGilvray, Kirk C, Easley, Jeremiah T, Palmer, Ross H, Ehrhart, E J, Haussler, Kevin K, Browning, Raymond C, Santoni, Brandon G and Puttlitz, Christian M. “An in vivo ovine model of bone tissue alterations in simulated microgravity conditions..” Journal of biomechanical engineering 136.2, 2014, p. 21020., ISSN 1528-8951, https://dx.doi.org/10.1115/1.4025854  
56 Geber, S., Sales, L., & Sampaío, M.A. (2002). Laboratory Techniques for Human Embryos. Reproductive Biomedicine Online, 5 2, 211-8 .  
57 Glaser, Thilo, et al. “Design of a Pressurized Vessel Without a Sealing Liner for Re- Search Purposes Under Earthlike Atmospheric Conditions in Space.” 13th European Conference on Spacecraft Structures, Materials and Environmental Testing, vol. ESA SP-727, 2014, https://ui.adsabs.harvard.edu/abs/2014ESASP.727E..23G/abstract. 
58 Gogu, Christian, et al. “Comparison of Materials for an Integrated Thermal Protection System for Spacecraft Reentry.” Journal of Spacecraft and Rockets, vol. 46, no. 3, 2009, pp. 501–13, doi:10.2514/1.35669. 
59 Gorkin, Robert, et al. “Centrifugal Microfluidics for Biomedical Applications.” Lab on a Chip, vol. 10, no. 14, 2010, pp. 1758–73, doi:10.1039/b924109d. 
60 Grigorian, R A, Aizikov, G S and Kreidich, J V. “Motor reactions and vestibular reflexes in cats and monkey in weightlessness..” Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology 2.1, 1995, ISSN 1077-9248  
61 Grinfeld, S, Dournon, C, Houillon, C, Bautz, A and Duprat, A M. “In vivo fertilization and development in microgravity using pleurodele (“ZEUS” project)..” Advances in space research : the official journal of the Committee on Space Research (COSPAR) 14.8, 1994, pp. 305-307., ISSN 0273-1177, https://dx.doi.org/10.1016/0273-1177(94)90415-4 
62 Gruber, Irmhild, and Matthias Klein. “Embryo Culture Media for Human Ivf: Which Possibilities Exist?” Journal of the Turkish German Gynecology Association, vol. 12, no. 2, 2011, pp. 110–17, doi:10.5152/jtgga.2011.25. 
63 Gualandris-Parisot L., Husson D., Foulquier F., Kan P., Davet J., Aimar C., Dournon C., Duprat A. M. Pleurodeles waltl, amphibian, Urodele, is a suitable biological model for embryological and physiological space experiments on a vertebrate. Advances in space research, 2001, vol. 28, iss. 4, pp. 569-578. DOI:10.1016/S0273-1177(01)00384-2
64 Gur’eva T. S., Dadasheva O. A., Grigoryan E. N., Sychev V. N., Mednikova E. I., Lebedeva Z. N. Osobennosti morfogeneza glaza u embrionov yaponskogo perepela, razvivshikhsya v usloviyakh nevesomosti. Aviakosmicheskaya i ekologicheskaya meditsina, 2003, vol. 37, no. 6, pp. 50-55.
65 Gur’eva T. S., Dadasheva O. A., Mednikova E. I., Dadasheva M. T., Sychev V. N. Gistogenez vnutrennikh organov embrionov yaponskogo perepela, razvivshikhsya v usloviyakh nevesomosti. Aviakosmicheskaya i ekologicheskaya meditsina, 2009, vol. 43, no. 6, pp. 8-13.
66 Gurovsky, N. N., et al. “Study of Physiological Effects of Weightlessness and Artificial Gravity in the Flight of the Biosatellite Cosmos-936.” Acta Astronautica, vol. 7, 1980, pp. 113–21, doi:10.1016/0094-5765(80)90122-8. 
67 Hahn, M. Biosatellite Project. 1967, https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19680018169.pdf. 
68 Han, Chao, et al. “Integration of Single Oocyte Trapping, in Vitro Fertilization and Embryo Culture in a Microwell-Structured Microfluidic Device.” Lab on a Chip, vol. 10, no. 21, 2010, pp. 2848–54, doi:10.1039/c005296e. 
69 Hara, H. “[Changes in the utricular otoconia of the chick embryo developed under 2G-gravity]..” Nihon Jibiinkoka Gakkai kaiho 96.6, 1993, pp. 969-976., ISSN 0030-6622, https://dx.doi.org/10.3950/jibiinkoka.96.969 
70 Hartwig, Jason W. “Propellant Management Devices for Low-Gravity Fluid Management: Past, Present, and Future Applications.” Journal of Spacecraft and Rockets, vol. 54, no. 4, 2017, pp. 808–24, doi:10.2514/1.A33750. 
71 Hashimoto, Shu, et al. “Selection of High-Potential Embryos by Culture in Poly(Dimethylsiloxane) Microwells and Time-Lapse Imaging.” Fertility and Sterility, vol. 97, no. 2, Elsevier Inc., 2012, pp. 332–37, doi:10.1016/j.fertnstert.2011.11.042. 
72 Hines, J W. “Medical and surgical applications of space biosensor technology..” Acta astronautica 38.4, 1996, pp. 261-267., ISSN 0094-5765, https://dx.doi.org/10.1016/0094-5765(96)00025-2  
73 Holzner, Gregor, et al. “An Optofluidic System with Integrated Microlens Arrays for Parallel Imaging Flow Cytometry.” Lab on a Chip, vol. 18, no. 23, The Royal Society of Chemistry, 2018, pp. 3631–37, doi:10.1039/C8LC00593A. 
74 Hu, W., Zhao, J., Long, M., Zhang, X.W., Liu, Q., Hou, M.Y., Kang, Q., Wang, Y., Xu, S., Kong, W., Zhang, H., Wang, S., Sun, Y.Q., Hang, H.Y., Huang, Y.P., Cai, W.M., Zhao, Y., Dai, J., Zheng, H., Duan, E.K., & Wang, J. (2014). Space Program SJ-10 of Microgravity Research. Microgravity Science and Technology, 26, 159-169.  
75 Huang, Hong-Yuan, et al. “Embryo Formation from Low Sperm Concentration by Using Dielectrophoretic Force.” Biomicrofluidics, vol. 9, no. 2, 2015, p. 022404, doi:10.1063/1.4915612. 
76 Hughes, Stephen J., F. McNeil Cheatwood, et al. “Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview.” 21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar 2011, no. May 2011, 2011, doi:10.2514/6.2011-2524. 
77 Hughes, Stephen J., Robert A. Dillman, et al. “Inflatable Re-Entry Vehicle Experiment (IRVE) Design Overview.” Collection of Technical Papers – 18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, 2005, pp. 381–94, doi:10.2514/6.2005-1636. 
78 Hullinger, R L. “The avian embryo responding to microgravity of space flight..” The Physiologist 36.1, 1993, ISSN 0031-9376 
79 Ijiri K. Fish mating experiment in space-what it aimed at and how it was prepared. Biological Sciences in Space, 1995, vol. 9, iss. 1, pp. 3-16. DOI: 10.2187/bss.9.3
80 Ijiri, K. ‘Development of Space-Fertilized Eggs and Formation of Primordial Germ Cells in the Embryos of Medaka Fish’. Advances in Space Research, vol. 21, no. 8, Jan. 1998, pp. 1155–58. ScienceDirect, doi:10.1016/S0273-1177(97)00205-6.
81 Im, Sung B., et al. “A Disposable On-Chip Microvalve and Pump for Programmable Microfluidics.” Lab on a Chip, vol. 18, no. 9, Royal Society of Chemistry, 2018, pp. 1310–19, doi:10.1039/c8lc00003d. 
82 Irvine Scientific. Continuous Single Culture – NX Complete. 2019, http://www.irvinesci.com/products/90168-continuous-single-culture-nx-complete#:~:text=Continuous Single Culture-NX Complete (CSCM -NXC) is,5%2F6 of embryo development. 
83 Izumi-Kurotani, Akemi and Kiyomoto, Masato. “Morphogenesis and gravity in a whole amphibian embryo and in isolated blastomeres of sea urchins..” Advances in space biology and medicine 9, 2003, pp. 83-99., ISSN 1569-2574, https://dx.doi.org/10.1016/s1569-2574(03)09004-x 
84 Jasanoff, Sheila, and Ingrid Metzler. “Borderlands of Life: IVF Embryos and the Law in the United States, United Kingdom, and Germany.” Science Technology and Human Values, 2018, doi:10.1177/0162243917753990. 
85 Jennings, R. T., and E. S. Baker. ‘Gynecological and Reproductive Issues for Women in Space: A Review’. Obstetrical & Gynecological Survey, vol. 55, no. 2, Feb. 2000, pp. 109–16. PubMed, doi:10.1097/00006254-200002000-00025.
86 Jennings, Richard T, Garriott, Owen K, Bogomolov, Valery V, Pochuev, Vladimir I, Morgun, Valery V and Garriott, Richard A. “The I.S.S. flight of Richard Garriott: a template for medicine and science investigation on future spaceflight participant missions..” Aviation, space, and environmental medicine 81.2, 2010, pp. 133-135., ISSN 0095-6562, https://dx.doi.org/10.3357/asem.2650.2010  
87 Jennings, Richard T, Murphy, David M F, Ware, David L, Aunon, Serena M, Moon, Richard E, Bogomolov, Valery V, Morgun, Valeri V, Voronkov, Yuri I, Fife, Caroline E, Boyars, Michael C and Ernst, Randy D. “Medical qualification of a commercial spaceflight participant: not your average astronaut..” Aviation, space, and environmental medicine77.5, 2006, pp. 475-484., ISSN 0095-6562  
88 Jiang, W. B., et al. “Coupling Optimization of Composite Insulation and Vapor-Cooled Shield for on-Orbit Cryogenic Storage Tank.” Cryogenics, vol. 96, no. October, 2018, pp. 90–98, doi:10.1016/j.cryogenics.2018.10.008. 
89 Johnston, Smith L et al. “Astronaut medical selection during the shuttle era: 1981-2011.” Aviation, space, and environmental medicinevol. 85,8 (2014): 823-7. doi:10.3357/ASEM.3968.2014  
90 Jonas Dino. “Cryogenic Fluid Management.” NASA, 2008, https://www.nasa.gov/centers/ames/research/technology-onepagers/cryogenic-fluid-management.html. 
91 Jones, J A, Johnston, S, Campbell, M, Miles, B and Billica, R. “Endoscopic surgery and telemedicine in microgravity: developing contingency procedures for exploratory class spaceflight..” Urology 53.5, 1999, pp. 892-897., ISSN 0090-4295, https://dx.doi.org/10.1016/s0090-4295(99)00024-2  
92 Joseph, Jeswin, et al. “Effect of Insulation Thickness on Pressure Evolution and Thermal Stratification in a Cryogenic Tank.” Applied Thermal Engineering, vol. 111, Elsevier Ltd, 2017, pp. 1629–39, doi:10.1016/j.applthermaleng.2016.07.015. 
93 Jung, S., et al. “Simulated Microgravity Influences Bovine Oocyte in Vitro Fertilization and Preimplantation Embryo Development.” Journal of Animal and Veterinary Advances, vol. 8, no. 9, Medwell Online, 2009, pp. 1807–14. 
94 Kamiya, Hiroyuki, Sasaki, Shoichi, Ikeuchi, Takahito, Umemoto, Yukihiro, Tatsura, Hiroyuki, Hayashi, Yutaro, Kaneko, Shigeo and Kohri, Kenjiro. “Effect of simulated microgravity on testosterone and sperm motility in mice..” Journal of andrology 24.6, 2003, pp. 885-890., ISSN 0196-3635, https://dx.doi.org/10.1002/j.1939-4640.2003.tb03140.x 
95 Karmali, Faisal, and Mark Shelhamer. “The Dynamics of Parabolic Flight: Flight Characteristics and Passenger Percepts.” Acta Astronautica, vol. 63, no. 5-6, 2008, pp. 594–602., doi:10.1016/j.actaastro.2008.04.009.   
96 Kelly, John W., et al. Mid-Air Retrieval of Heavy, Earth-Returning Space Systems. 2016, https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160007968.pdf. 
97 Kieslinger, Dorit C., et al. “In Vitro Development of Donated Frozen-Thawed Human Embryos in a Prototype Static Microfluidic Device: A Randomized Controlled Trial.” Fertility and Sterility, vol. 103, no. 3, 2015, pp. 680–86, doi:10.1016/j.fertnstert.2014.12.089. 
98 Kirkpatrick, A W, Campbell, M R, Novinkov, O L, Goncharov, I B and Kovachevich, I V. “Blunt trauma and operative care in microgravity: a review of microgravity physiology and surgical investigations with implications for critical care and operative treatment in space..” Journal of the American College of Surgeons 184.5, 1997, pp. 441-453., ISSN 1072-7515  
99 Kirkpatrick, Andrew W., et al. “Damage Control Surgery in Weightlessness.” Journal of Trauma and Acute Care Surgery, vol. 82, no. 2, 2017, pp. 392–399., doi:10.1097/ta.0000000000001310.   
100 Kojima, Yoshiyuki, et al. “Effects of Simulated Microgravity on Mammalian Fertilization and Preimplantation Embryonic Development in Vitro.” Fertility and Sterility, vol. 74, no. 6, 2000, pp. 1142–47, doi:10.1016/S0015-0282(00)01583-1. 
101 Komazaki, Shinji. “Gravitational effects on apoptosis of presumptive ectodermal cells of amphibian embryo..” Journal of experimental zoology. Part A, Comparative experimental biology 301.3, 2004, pp. 204-211., ISSN 1548-8969, https://dx.doi.org/10.1002/jez.a.20025 
102 Komissarova D. V., Gur’eva T. S., Dadasheva O. A., Sychev V. N. Gistogenez kostnoy i khryashchevoy tkani embrionov yaponskogo perepela v usloviyakh nevesomosti na rannikh stadiyakh razvitiya. Aviakosmicheskaya i ekologicheskaya meditsina, 2012, vol. 46, no. 5, pp. 64-67.
103 Komissarova D. V., Gur’eva T. S., Sychev V. N. Dinamika ispol’zovaniya kal’tsiya dlya postroeniya skeleta embrionov yaponskogo perepela v usloviyakh nevesomosti. Aviakosmicheskaya. i ekologicheskaya meditsina, 2011, vol. 45, no. 5, pp. 52-54.
104 Komissarova D. V., Gur’eva T. S., Sychev V. N. Obshchaya kharakteristika embriogeneza khryashchevoy i kostnoy tkani u embrionov yaponskogo perepela v nevesomosti. Aviakosmicheskaya i ekologicheskaya meditsina, 2013, vol. 47, no. 4, pp. 77-78.
105 Komorowski, Matthieu, Watkins, Sharmila D, Lebuffe, Gilles and Clark, Jonathan B. “Potential anesthesia protocols for space exploration missions..” Aviation, space, and environmental medicine 84.3, 2013, pp. 226-233., ISSN 0095-6562, https://dx.doi.org/10.3357/asem.3427.2013  
106 Konc, János, et al. “Cryopreservation of Embryos and Oocytes in Human Assisted Reproduction.” BioMed Research International, Hindawi Publishing Corporation, 2014, doi:10.1155/2014/307268. 
107 Korzun, Ashley M., Brandon P. Smith, et al. “Entry, Descent, and Landing System Design for the Mars Gravity Biosatellite.” Sixth International Planetary Probe Workshop, Cross Cutting Technologies, 2008, pp. 1–15. 
108 Korzun, Ashley M., Robert D. Braun, et al. “Mars Gravity Biosatellite: Engineering, Science, and Education.” Acta Astronautica, vol. 63, no. 1–4, 2008, pp. 8–19, doi:10.1016/j.actaastro.2007.12.036. 
109 Krichevsky, Sergey. ‘Creation of a “Cosmic” Human: Ideas, Technologies, Projects, Experience, Risks, Limitations, and Prospects’. Future Human Image, vol. 13, no. 13, Международное философско-космологическое общество, 2020, pp. 32–45.
110 Kuang, A, Popova, A, Xiao, Y and Musgrave, M E. “Pollination and embryo development in Brassica rapa L. in microgravity..” International journal of plant sciences 161.2, 2000, pp. 203-211., ISSN 1058-5893, https://dx.doi.org/10.1086/314254 
111 Kupriyanova M. S., Usik M. A., Ogneva I. V. Soderzhanie tsitoskeletnykh belkov v ootsitakh tret’ego pokoleniya plodovoy mushki Drosophila melanogaster, poluchennykh posle 44,5-sutochnogo kosmicheskogo poleta. Aviakosmicheskaya i ekologicheskaya meditsina, 2016, vol. 50. no. 4, pp. 27-34.
112 Lai, D., et al. “Slow and Steady Cell Shrinkage Reduces Osmotic Stress in Bovine and Murine Oocyte and Zygote Vitrification.” Human Reproduction, vol. 30, no. 1, 2015, pp. 37–45, doi:10.1093/humrep/deu284. 
113 Le Gac, Séverine, and Verena Nordhoff. “Microfluidics for Mammalian Embryo Culture and Selection: Where Do We Stand Now?” Molecular Human Reproduction, vol. 23, no. 4, 2017, pp. 213–26, doi:10.1093/molehr/gaw061. 
114 Lehtonen, E. and Snow, M. (1989). Early Development in the Mouse: Would it be Affected by Microgravity?. Advances in Space Research, 9(11), pp.201-208.  
115 Lei X., Cao Y., Ma B., et al. Development of mouse preimplantation embryos in space. National Science Review, 2020, Vol. 7, Iss. 9,. Pp. 1437-1446, DOI: 10.1093/nsr/nwaa062
116 Lei, Xiaohua, et al. “Advances of Mammalian Reproduction and Embryonic Development Under Microgravity.” Life Science in Space: Experiments on Board the SJ-10 Recoverable Satellite, Springer Singapore, 2019, pp. 281–315, doi:10.1007/978-981-13-6325-2_11. 
117 Lerner, David J and Parmet, Allen J. “Interventional radiology: the future of surgery in microgravity..” Aviation, space, and environmental medicine 84.12, 2013, pp. 1304-1306., ISSN 0095-6562, https://dx.doi.org/10.3357/asem.3790.2013  
118 Levin, R. J. ‘Effects of Space Travel on Sexuality and the Human Reproductive System’. Journal of the British Interplanetary Society, vol. 42, no. 7, Aug. 1989, pp. 378–82.
119 Li, Chunhua, et al. “China’s Recoverable Satellites and Their Onboard Experiments.” Microgravity Science and Technology, vol. 20, no. 2, 2008, pp. 61–65, doi:10.1007/s12217-008-9009-4. 
120 Li, H.Y., Zhang, H., Miao, G.Y., Xie, Y., Sun, C., Di, C., Liu, Y., Liu, Y.Y., Zhang, X., Ma, X.F., Xu, S., Gan, L., & Zhou, X. (2013). Simulated Microgravity Conditions and Carbon Ion Irradiation Induce Spermatogenic Cell Apoptosis and Sperm DNA Damage. Biomedical and Environmental Sciences : BES, 26 9, 726-34 .  
121 Lim, Y. C., et al. “Lab-on-a-Chip: A Component View.” Microsystem Technologies, vol. 16, no. 12, 2010, pp. 1995–2015, doi:10.1007/s00542-010-1141-6. 
122 Liu, Jun, et al. “Automated Vitrification of Embryos: A Robotics Approach.” IEEE Robotics & Automation Magazine, vol. 22, no. 2, IEEE, June 2015, pp. 33–40, doi:10.1109/MRA.2014.2386195. 
123 Ma, Bao Hua, et al. “Real-Time Micrography of Mouse Preimplantation Embryos in an Orbit Module on SJ-8 Satellite.” Microgravity Science and Technology, vol. 20, no. 2, 2008, pp. 127–36, doi:10.1007/s12217-008-9013-8. 
124 Ma, Rui, et al. “In Vitro Fertilization on a Single-Oocyte Positioning System Integrated with Motile Sperm Selection and Early Embryo Development.” Analytical Chemistry, vol. 83, no. 8, 2011, pp. 2964–70, doi:10.1021/ac103063g. 
125 Maalouf, M., et al. “Biological Effects of Space Radiation on Human Cells: History, Advances and Outcomes.” Journal of Radiation Research, vol. 52, no. 2, 2011, pp. 126–46, doi:10.1269/jrr.10128. 
126 Maalouf, Mira, et al. ‘Biological Effects of Space Radiation on Human Cells: History, Advances and Outcomes’. Journal of Radiation Research, vol. 52, no. 2, 2011, pp. 126–46. PubMed, doi:10.1269/jrr.10128.
127 Madou, Marc, et al. “Lab on a CD.” Annual Review of Biomedical Engineering, vol. 8, 2006, pp. 601–28, doi:10.1146/annurev.bioeng.8.061505.095758. 
128 Marchetta, J. G., et al. “Small-Scale Room-Temperature-Vulcanizing-655/Aerogel Cryogenic Liquid Storage Tank for Space Applications.” Journal of Spacecraft and Rockets, vol. 55, no. 4, 2018, pp. 1007–13, doi:10.2514/1.A33845. 
129 Marco R., Bengurira A., Sanchez J. et al. Effects of the space environment on Drosophila melanogaster development. Implications of the IML-2 experiment. Journal of Biotechnology, 1996, vol. 47, iss. 2 – 3, pp. 179-189. DOI: 10.1016/0168-1656(96)01408-3
130 Markham, S M, and J A Rock. “Deploying and testing an expandable surgical chamber in microgravity.” Aviation, space, and environmental medicine vol. 60,1 (1989): 76-9.  
131 Markham, S M, and J A Rock. “Microgravity testing a surgical isolation containment system for space station use.” Aviation, space, and environmental medicine vol. 62,7 (1991): 691-3.  
132 Marraffa, L., et al. “IRDT – Inflatable Re-Entry and Descent Technology: The IRDT-2 Mission and Future Applications.” European Space Agency, (Special Publication) ESA SP, no. 521, 2003, pp. 19–28, https://www.researchgate.net/publication/234481387%0AIRDT. 
133 Marthy, H J, Schatt, P and Santella, L. “Fertilization of sea urchin eggs in space and subsequent development under normal conditions..” Advances in space research : the official journal of the Committee on Space Research (COSPAR) 14.8, 1994, pp. 197-208., ISSN 0273-1177, https://dx.doi.org/10.1016/0273-1177(94)90404-9 
134 Masini M. A., Albi E., Barmo C., et al. The impact of long-term exposure to space environment on adult mammalian organisms: a study on mouse thyroid and testis. PLoS One, 2012, no. 7, iss. 4, e35418. DOI: 10.1371/journal.pone.0035418
135 Matsumura T., Noda T., Muratani M., Okada R., Yamane M., Isotani A., Kudo T., Takahashi S., Ikawa M. Male mice, caged in the International Space Station for 35 days, sire healthy offspring. Scientific reports, 2019, vol. 9(1), p. 13733. DOI: 10.1038/s41598-019-50128-w
136 McCuaig, K E and Houtchens, B A. “Management of trauma and emergency surgery in space..” The Journal of trauma 33.4, 1992, pp. 610-625., ISSN 0022-5282, https://dx.doi.org/10.1097/00005373-199210000-00018  
137 McCuaig, K. “Aseptic technique in microgravity.” Surgery, gynecology & obstetrics vol. 175,5 (1992): 466-76.  
138 McKinley, Ian M., et al. “Pyrolytic Graphite Film Thermal Straps: Characterization Testing.” Cryogenics, vol. 80, Elsevier Ltd, 2016, pp. 174–80, doi:10.1016/j.cryogenics.2016.10.002. 
139 Mehling, Matthias, and Savaş Tay. “Microfluidic Cell Culture.” Current Opinion in Biotechnology, vol. 25, 2014, pp. 95–102, doi:10.1016/j.copbio.2013.10.005. 
140 Merrill A. H. Jr., Wang E., Mullins R. E., Grindeland R. E., Popova I. A. Analyses of plasma for metabolic and hormonal changes in rats flown aboard COSMOS 2044. Journal of applied physiology (Bethesda, Md.: 1985), 1992, vol. 73, 2 suppl, pp. 132S-135S. DOI: 10.1152/jappl.1992.73.2.S132
141 Molnar, Charles, and Jane Gair. “Fertilization and Early Embryonic Development.” Concepts of Biology—1st Canadian Edition, https://opentextbc.ca/biology/chapter/24-6-fertilization-and-early-embryonic-development/. 
142 Nagao, K, Nishiwaki, Y and Ijiri, K. “[Development of medaka embryo under simulated microgravity by 3D-clinostat: development of retina and cartilage]..” Uchu Seibutsu Kagaku 13.3, 1999, pp. 162-163., ISSN 0914-9201 
143 Ogneva I. V., Belyakin S. N., Sarantseva S. V. The Development of Drosophila Melanogaster under Different Duration Space Flight and Subsequent Adaptation to Earth Gravity. PLoS One, 2016, vol. 11,.iss. 11, e0166885. DOI: 10.1371/journal.pone.0166885
144 Ogneva I. V., Usik M. A., Loktev S. S., Zhdankina Y. S., Biryukov N. S., Orlov O. I., Sychev V. N. Testes and duct deferens of mice during space flight: cytoskeleton structure, sperm-specific proteins and epigenetic events. Scientific reports, 2019, vol. 9(1), p. 9730. DOI: 10.1038/s41598-019-46324-3
145 Ogneva I.V., Guryeva T.S., Sychev V.N., Orlov OI Embryological research in space / Aerospace sphere. 2021. No. 1. S. 34-43. https://www.vesvks.ru/vks/article/embriologicheskie-issledovaniya-v-kosmose-16625?fbclid=IwAR1VkEWbQRPpAPEEIcUyMKLulk6xnie3oznd-0GT2Nejdk0SmdB_cvtIP7U
146 Ogneva, Irina V, Usik, Maria A, Biryukov, Nikolay S and Zhdankina, Yuliya S. “Sperm Motility of Mice under Simulated Microgravity and Hypergravity..” International journal of molecular sciences 21.14, 2020, ISSN 1422-0067, https://dx.doi.org/10.3390/ijms21145054 
147 Ogneva, Irina V, Usik, Maria A, Burtseva, Maria V, Biryukov, Nikolay S, Zhdankina, Yuliya S, Sychev, Vladimir N and Orlov, Oleg I. “Drosophila melanogaster Sperm under Simulated Microgravity and a Hypomagnetic Field: Motility and Cell Respiration..” International journal of molecular sciences 21.17, 2020, ISSN 1422-0067, https://dx.doi.org/10.3390/ijms21175985 
148 Ontogenesis of Mammals in Microgravity, NASA TM 103978, 1993. https://ntrs.nasa.gov/api/citations/19940013163/downloads/19940013163.pdf
149 Orban J. I., Piert S. J., Guryeva T. S., Hester P. Y. Calcium utilization by quail embryos during activities preceding space flight and during embryogenesis in microgravity aboard the orbital space station MIR. Journal of gravitational physiology, 1999, vol. 6(2), pp. 33-41.
150 Orlov O. I., Kotov O. V., Kussmaul’ A. R., Belakovskiy M. S. Rol’ vracha v dal’nem kosmicheskom polete. Vozdushno-kosmicheskaya sfera, 2020, no. 1, pp. 36-49.
151 Orth, Antony, and Kenneth Crozier. “Microscopy with Microlens Arrays: High Throughput, High Resolution and Light-Field Imaging.” Optics Express, vol. 20, no. 12, 2012, p. 13522, doi:10.1364/oe.20.013522. 
152 Pagano, S., and R. Savino. “Adjustable Aerobraking Heat Shield for Satellites Deployment and Recovery.” Lecture Notes in Engineering and Computer Science, vol. 2230, 2017, pp. 906–11. 
153 Panait, Lucian, Broderick, Timothy, Rafiq, Azhar, Speich, John, Doarn, Charles R and Merrell, Ronald C. “Measurement of laparoscopic skills in microgravity anticipates the space surgeon..” American journal of surgery188.5, 2004, pp. 549-552., ISSN 0002-9610, https://dx.doi.org/10.1016/j.amjsurg.2004.07.029  
154 Panait, Lucian, Merrell, Ronald C, Rafiq, Azhar, Dudrick, Stanley J and Broderick, Timothy J. “Virtual reality laparoscopic skill assessment in microgravity..” The Journal of surgical research 136.2, 2006, pp. 198-203., ISSN 0022-4804, https://dx.doi.org/10.1016/j.jss.2006.05.026  
155 Panzarella, Charles H., and Mohammad Kassemi. “Self-Pressurization of Large Spherical Cryogenic Tanks in Space.” Journal of Spacecraft and Rockets, vol. 42, no. 2, American Institute of Aeronautics and Astronautics, Mar. 2005, pp. 299–308, doi:10.2514/1.4571. 
156 Parfenov G. P. Geneticheskie issledovaniya v kosmose. Kosmicheskie issledovaniya, 1967, iss. 5, pp. 633-635.
157 Parfenov G. P. Prichiny letal’nosti zarodyshevykh kletok u drozofily posle poletov korabley “Vostok-3” i “Vostok-4”. Kosmicheskie issledovaniya, 1964, iss. 2, pp. 335-342.
158 Parfenov G. P. Razvitie organizmov v sostoyanii nevesomosti. Kosmicheskie issledovaniya, 1964, iss. 2, pp. 330-335.
159 Parfenov G. P. Vozniknovenie dominantnykh letal’nykh mutatsiy u drozofily pri kosmicheskom polete na korable-sputnike. Problemy kosmicheskoĭ biologii, vol. 1, Moscow, Nauka, 1962, pp. 232-247.
160 Parfyonov G. P., Platonova R. N., Tairbekov M. G., Zhvalikovskaya V. P., Mozgovaya I. E., Rostopshina A. V., Rozov A. N. Biological experiments carried out aboard the biological satellite Cosmos-936. Life Sciences in Space Research, 1979, vol. 17, pp. 297-301.
161 Parfyonov, G. P., et al. “Biological Investigations Aboard Biosatellite Cosmos-782.” Acta Astronautica, vol. 6, no. 10, 1979, pp. 1235–38, doi:10.1016/0094-5765(79)90115-2. 
162 Perozziello, G., Møllenbach, J., Laursen, S.B., Fabrizio, E.D., Gernaey, K.V., & Krühne, U. (2012). Lab on a Chip Automates in vitro Cell Culturing.  
163 Pinsolle, Vincent, Martin, Dominique, Coninck, Laurent de, Techoueyres, Pierre and VaÔda, Pierre. “Microsurgery in microgravity is possible..” Microsurgery 25.2, 2005, pp. 152-154., ISSN 0738-1085, https://dx.doi.org/10.1002/micr.20089  
164 Putman, Philip, et al. Cryogenic Thermal Management for CryoCube-1. 2015, https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=3279&context=smallsat. 
165 Pyne, Derek G., et al. “Automated Vitrification of Mammalian Embryos on a Digital Microfluidic Device.” Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2014, pp. 829–32, doi:10.1109/MEMSYS.2014.6765769. 
166 Rafiq, Azhar, Broderick, Timothy J, Williams, David R, Doarn, Charles R, Jones, Jeffrey A and Merrell, Ronald C. “Assessment of simulated surgical skills in parabolic microgravity..” Aviation, space, and environmental medicine76.4, 2005, pp. 385-391., ISSN 0095-6562  
167 Rafiq, Azhar, Hummel, Russ, Lavrentyev, Vladimir, Derry, William, Williams, David and Merrell, Ronald C. “Microgravity effects on fine motor skills: tying surgical knots during parabolic flight..” Aviation, space, and environmental medicine 77.8, 2006, pp. 852-856., ISSN 0095-6562  
168 Rando, Nicola. “Cryogenics in Space.” Observing Photons in Space, Springer New York, 2013, pp. 639–55, doi:10.1007/978-1-4614-7804-1_37. 
169 Reed, Shaun. “Understanding Embryo Grading.” Utah Fertility Center, 2017, https://www.utahfertility.com/understanding-embryo-grading/. 
170 Reitz, Guenther. “Characteristic of the Radiation Field in Low Earth Orbit and in Deep Space.” Zeitschrift Fur Medizinische Physik, vol. 18, no. 4, 2008, pp. 233–43, doi:10.1016/j.zemedi.2008.06.015. 
171 Richter S., Nguyen NT., Wego A., Pagel L. “Microfluidic Devices on Printed Circuit Board.” Microfluidics and BioMEMS Applications, Springer, 2002, doi:https://doi.org/10.1007/978-1-4757-3534-5_7. 
172 Ronca, A E and Alberts, J R. “Physiology of a microgravity environment selected contribution: effects of spaceflight during pregnancy on labor and birth at 1 G..” Journal of applied physiology (Bethesda, Md. : 1985) 89.2, 2000, pp. 849-854., ISSN 8750-7587, https://dx.doi.org/10.1152/jappl.2000.89.2.849 
173 Ronca, April E, Fritzsch, Bernd, Bruce, Laura L and Alberts, Jeffrey R. “Orbital spaceflight during pregnancy shapes function of mammalian vestibular system..” Behavioral neuroscience 122.1, 2008, pp. 224-232., ISSN 0735-7044, https://dx.doi.org/10.1037/0735-7044.122.1.224 
174 Ronca, April E., Ellen S. Baker, et al. ‘Effects of Sex and Gender on Adaptations to Space: Reproductive Health’. Journal of Women’s Health, vol. 23, no. 11, Nov. 2014, pp. 967–74. PubMed Central, doi:10.1089/jwh.2014.4915.
175 Ronca, April E., Joshua S. Alwood, et al. ‘Mammalian Reproduction and Development on the International Space Station (ISS): Proceedings of the Rodent Mark III Habitat Workshop’. Gravitational and Space Research, vol. 1, no. 1, 1, Oct. 2013. gravitationalandspaceresearch.org, http://gravitationalandspaceresearch.org/index.php/journal/article/view/623.
176 Rosowski, J R, Gouthro, M A, Schmidt, K K, Klement, B J and Spooner, B S. “Effect of microgravity and hypergravity on embryo axis alignment during postencystment embryogenesis in Artemia franciscana (Anostraca)..” Journal of crustacean biology : a quarterly of the Crustacean Society for the publication of research on any aspect of the biology of crustacea 15.4, 1995, pp. 625-632., ISSN 0278-0372 
177 Ross, R. G. Aerospace Coolers: A 50-Year Quest for Long-Life Cryogenic Cooling in Space BT  – Cryogenic Engineering. Edited by Klaus D Timmerhaus and Richard P Reed, Springer New York, 2007, pp. 225–84, doi:10.1007/0-387-46896-X_11. 
178 Sahin, Onur, et al. “3 – Micro- and Nanopatterning of Biomaterial Surfaces.” Woodhead Publishing Series in Biomaterials, edited by Preetha Balakrishnan et al., Woodhead Publishing, 2018, pp. 67–78, doi:https://doi.org/10.1016/B978-0-08-102205-4.00003-9. 
179 Santos, M.J., Apter, S., Coticchio, G., Debrock, S., Lundin, K., Plancha, C.E., Prados, F.N., Rienzi, L.F., Verheyen, G., Woodward, B., & Vermeulen, N. (2016). Revised Guidelines for Good Practice in IVF Laboratories (2015). Human Reproduction, 31 4, 685-689.  
180 Santy, P. A., and R. T. Jennings. ‘Human Reproductive Issues in Space’. Advances in Space Research: The Official Journal of the Committee on Space Research (COSPAR), vol. 12, no. 2–3, 1992, pp. 151–55. PubMed, doi:10.1016/0273-1177(92)90102-4.
181 Sapp W. J., Philpott D. E., Williams C. S., Williams J. W., Kato K., Miquel J. M, Serova L. Comparative study of spermatogonial survival after x-ray exposure, high LET (HZE) irradiation or spaceflight. Advances in space research, 1992, vol. 12 (2-3), pp. 179-189.
182 Sapp WJ, Philpott DE, Williams CS, Kato K, Stevenson J, et al. (1990) Effects of Spaceflight on the Spermatogonial Population of Rat Seminiferous Epithelium. Faseb J 4: 101–104.  
183 Sasaki, Shoichi, et al. “[Male Fertility in Space].” Hinyokika Kiyo. Acta Urologica Japonica, vol. 50, no. 8, Aug. 2004, p. 559—563, http://europepmc.org/abstract/MED/15471077. 
184 Satava, R M. “Surgery in space. Phase I: Basic surgical principles in a simulated space environment..” Surgery 103.6, 1988, pp. 633-637., ISSN 0039-6060  
185 Savel’ev S. V., Serova L. V., Besova N. V., Nosovskiy A. M. Vliyanie nevesomosti na razvitie endokrinnoy sistemy krys. Aviakosmicheskaya i ekologicheskaya meditsina, 1998, vol. 32, no. 2, pp.31-36.
186 Schatten, H, Chakrabarti, A, Levine, H G and Anderson, K. “Utilization of the aquatic research facility and fertilization syringe unit to study sea urchin development in space..” Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology 6.2, 1999, pp. 43-53., ISSN 1077-9248 
187 Schatten, H, Chakrabarti, A, Taylor, M, Sommer, L, Levine, H, Anderson, K, Runco, M and Kemp, R. “Effects of spaceflight conditions on fertilization and embryogenesis in the sea urchin Lytechinus pictus..” Cell biology international 23.6, 1999, pp. 407-415., ISSN 1065-6995, https://dx.doi.org/10.1006/cbir.1999.0371 
188 Schatten, H, Zoran, S, Levine, H G, Anderson, K and Chakrabarti, A. “Sea urchin fertilization during a KC-135 parabolic flight..” Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology 6.1, 1999, ISSN 1077-9248 
189 Schiewe, M. C., et al. “Comprehensive Assessment of Cryogenic Storage Risk and Quality Management Concerns: Best Practice Guidelines for ART Labs.” Journal of Assisted Reproduction and Genetics, vol. 36, no. 1, Journal of Assisted Reproduction and Genetics, 2019, pp. 5–14, doi:10.1007/s10815-018-1310-6. 
190 Sciorio, R., Thong, J., & Pickering, S.J. (2017). Comparison of the Development of Human Embryos Cultured in Either an EmbryoScope or Benchtop Incubator. Journal of Assisted Reproduction and Genetics, 35, 515-522.  
191 Sekulić, Slobodan R, Lukac, Damir D and Naumović, Nada M. “The fetus cannot exercise like an astronaut: gravity loading is necessary for the physiological development during second half of pregnancy..” Medical hypotheses 64.2, 2005, pp. 221-228., ISSN 0306-9877, https://dx.doi.org/10.1016/j.mehy.2004.08.012 
192 Sellers, Jerry Jon. “Returning from Space: Re-Entry.” Understanding Space: An Introduction to Astronautics, 2000, pp. 323–58, https://www.faa.gov/about/office_org/headquarters_offices/avs/offices/aam/cami/library/online_libraries/aerospace_medicine/tutorial/media/iii.4.1.7_returning_from_space.pdf. 
193 Serova L. V. Adaptivnye vozmozhnosti mlekopitayushchikh v usloviyakh nevesomosti. Aviakosmicheskaya i ekologicheskaya meditsina, 1996, vol. 30, no. 2, pp. 5-11.
194 Serova L. V. Mikrogravitatsiya i razvitie mlekopitayushchikh: problemy, rezul’taty, perspektivy. Aviakosmicheskaya i ekologicheskaya meditsina, 2001, vol. 35, no. 2, pp. 32-35.
195 Serova L. V. Vliyanie nevesomosti na reproduktivnuyu sistemu mlekopitayushchikh. Kosmicheskaya biologiya i aviakosmicheskaya meditsina, 1989, vol. 23, no. 2, pp. 11-16.
196 Serova L. V., Natochin Yu. V., Nosovskiy A. M., Shakhmatova E. I., Fast T. Vliyanie nevesomosti na sistemu mat’ – plod (rezul’taty embriologicheskogo eksperimenta NIH-R1 na bortu Space Shuttle). Aviakosmicheskaya i ekologicheskaya meditsina, 1996, vol. 30, no. 6, pp. 4-8.
197 Serova, L. V., and L. A. Denisova. ‘The Effect of Weightlessness on the Reproductive Function of Mammals’. The Physiologist, vol. 25, no. 6, Dec. 1982, pp. S9-12.
198 Sihver, L. and Berger, T. (2017). The DOSIS and DOSIS 3D Project On-board the ISS — Current Status and Scientific Overview. 2017 IEEE Aerospace Conference.  
199 Sin, Mandy L. Y., et al. “System Integration – A Major Step toward Lab on a Chip.” Journal of Biological Engineering, vol. 5, no. May, 2011, doi:10.1186/1754-1611-5-6. 
200 Skrobánek, P., et al. ‘Effect of Long-Term Simulated Microgravity on Some Sexual Traits of Male Japanese Quail’. Physiological Research, vol. 61, no. 4, 2012, pp. 389–94. PubMed, doi:10.33549/physiolres.932263.
201 Skyrocket. CryoCube-1. 2020, https://space.skyrocket.de/doc_sdat/cryocube-1.htm. 
202 Song-yi Jung, Susan D. Bowers and Scott T. Willarda, 2009. Simulated Microgravity Influences Bovine Oocyte In vitro Fertilization and Preimplantation Embryo Development. Journal of Animal and Veterinary Advances, 8: 1807-1814.  
203 Souza, K A and Black, S D. “Amphibian fertilization and development in microgravity..” The Physiologist 28.6, 1985, ISSN 0031-9376 
204 Space Radiation Protection. no. SP-8054, 1970, https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19710015599.pdf. 
205 Speich, John E, Cagle, Yvonne D, Rafiq, Azhar, Merrell, Ronald C, Doarn, Charles R and Broderick, Timothy J. “Evaluation of surgical skills in microgravity using force sensing..” Medical engineering & physics 27.8, 2005, pp. 687-693., ISSN 1350-4533, https://dx.doi.org/10.1016/j.medengphy.2005.02.005  
206 Spencer, David A., et al. “SPORE Entry, Descent and Landing.” 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, no. January, 2012, pp. 1–10, doi:10.2514/6.2012-214. 
207 Stazhadze, L.L., et al. “Anesthesia, Surgical Aid and Resuscitation in Manned Space Missions.” Acta Astronautica, vol. 8, no. 9-10, 1981, pp. 1109–1113., doi:10.1016/0094-5765(81)90085-0.   
208 Steptoe, P.C., & Edwards, R.G. (1978). Birth After the Reimplantation of a Human Embryo. The Lancet, 312.  
209 Steward, Ryan G., et al. “Oocyte Number as a Predictor for Ovarian Hyperstimulation Syndrome and Live Birth: An Analysis of 256,381 in Vitro Fertilization Cycles.” Fertility and Sterility, vol. 101, no. 4, 2014, pp. 967–73, doi:https://doi.org/10.1016/j.fertnstert.2013.12.026. 
210 Sugimura, Satoshi, et al. “Time-Lapse Cinematography-Compatible Polystyrene-Based Microwell Culture System: A Novel Tool for Tracking the Development of Individual Bovine Embryos1.” Biology of Reproduction, vol. 83, no. 6, 2010, pp. 970–78, doi:10.1095/biolreprod.110.085522. 
211 Sutherland, Betsy M., et al. “Clustered DNA Damages Induced in Isolated DNA and in Human Cells by Low Doses of Ionizing Radiation.” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 1, 2000, pp. 103–08, doi:10.1073/pnas.97.1.103. 
212 Swain, J.E., Lai, D.A., Takayama, S., & Smith, G.D. (2013). Thinking Big by Thinking Small: Application of Microfluidic Technology to Improve ART. Lab on a chip, 13, 1213-24 .  
213 Swain, Jason E. “Decisions for the IVF Laboratory: Comparative Analysis of Embryo Culture Incubators.” Reproductive BioMedicine, vol. 28, no. 5, Reproductive Healthcare Ltd., 2014, pp. 535–47, doi:10.1016/j.rbmo.2014.01.004. 
214 Tash, J S, Kim, S, Schuber, M, Seibt, D and Kinsey, W H. “Fertilization of sea urchin eggs and sperm motility are negatively impacted under low hypergravitational forces significant to space flight..” Biology of reproduction 65.4, 2001, pp. 1224-1231., ISSN 0006-3363, https://dx.doi.org/10.1095/biolreprod65.4.1224 
215 Tash, Joseph S., and Gerácimo E. Bracho. “Microgravity Alters Protein Phosphorylation Changes during Initiation of Sea Urchin Sperm Motility.” The FASEB Journal, vol. 13, 1999, pp. 43–54, doi:10.1096/fasebj.13.9001.s43. 
216 Taylor, G. (1977). Cell Biology Experiments Conducted in Space. BioScience, 27(2), pp.102-108.  
217 Thapa, Seema, and Yun Seok Heo. ‘Microfluidic Technology for in Vitro Fertilization (IVF)’. JMST Advances, vol. 1, no. 1–2, June 2019, pp. 1–11. DOI.org (Crossref), doi:10.1007/s42791-019-0011-3.
218 The First Vertebrate Mating in Space -A Fish Story:Chapter3. http://cosmo.ric.u-tokyo.ac.jp/SPACEMEDAKA/IML2/e/text/textchap3/chapter3_E.html. Accessed 23 Apr. 2021.
219 Thomsen, Donald, et al. ‘Shields-1, A SmallSat Radiation Shielding Technology Demonstration’. Small Satellite Conference, Aug. 2015, https://digitalcommons.usu.edu/smallsat/2015/all2015/84.
220 Tirolien, T., et al. “Spacecraft Cryogenic Developments and Perspectives at the European Space Agency.” Cryocoolers 20, vol. Cryocooler, 2018, pp. 377–86, https://cryocooler.org/resources/Documents/C20/377.pdf. 
221 Traon, A. Pavy-Le, et al. “Chapter 4 Pharmacology in Space: Pharmacotherapy.” Advances in Space Biology and Medicine, 1997, pp. 93–105., doi:10.1016/s1569-2574(08)60079-9. 
222 Tripathi, A., and N. Chronis. “A Doublet Microlens Array for Imaging Micron-Sized Objects.” Journal of Micromechanics and Microengineering, vol. 21, no. 10, 2011, doi:10.1088/0960-1317/21/10/105024. 
223 Tsai, Ching Fen, et al. “Centrifuge Accommodation Module (CAM) Cabin Air Temperature and Humidity Control Analysis.” SAE Technical Papers, no. 724, 2005, doi:10.4271/2005-01-2801. 
224 Ubbels, G A, Berendsen, W and Narraway, J. “Fertilization of frog eggs on a Sounding Rocket in space..” Advances in space research : the official journal of the Committee on Space Research (COSPAR) 9.11, 1989, pp. 187-197., ISSN 0273-1177, https://dx.doi.org/10.1016/0273-1177(89)90073-2 
225 Ubbels, G A, Berendsen, W, Kerkvliet, S and Narraway, J. “Fertilization and development of eggs of the South African clawed toad, Xenopus laevis, on sounding rockets in space..” Advances in space research : the official journal of the Committee on Space Research (COSPAR) 12.1, 1992, pp. 181-194., ISSN 0273-1177, https://dx.doi.org/10.1016/0273-1177(92)90282-3 
226 United Nations Scientific Committee on the Effects of Atomic Radiation. (2011). Sources and Effects of Ionizing Radiation. New York, NY: United Nations.  
227 Unsworth, Brian R., and Peter I. Lelkes. “Growing Tissues in Microgravity.” Nature Medicine, vol. 4, no. 8, 1998, pp. 901–07, doi:10.1038/nm0898-901. 
228 Varjo, Sami, et al. “Direct Imaging with Printed Microlens Arrays.” Proceedings – International Conference on Pattern Recognition, no. Icpr, IEEE, 2012, pp. 1355–58. 
229 Wakayama, Sayaka, Yuko Kamada, et al. “Healthy Offspring from Freeze-Dried Mouse Spermatozoa Held on the International Space Station for 9 Months.” Proceedings of the National Academy of Sciences of the United States of America, vol. 114, no. 23, 2017, pp. 5988–93, doi:10.1073/pnas.1701425114. 
230 Wakayama, Sayaka, Yumi Kawahara, et al. “Detrimental Effects of Microgravity on Mouse Preimplantation Development in Vitro.” PLoS ONE, vol. 4, no. 8, 2009, pp. 2–11, doi:10.1371/journal.pone.0006753. 
231 Wan Salim, W. W. A., et al. “Sporesat: A Nanosatellite Platform Lab-on-a-Chip System for Investigating Gravity Threshold of Fern-Spore Single-Cell Calcium Ion Currents.” Solid-State Sensors, Actuators, and Microsystems Workshop, Technical Digest, 2014, pp. 111–14, http://irep.iium.edu.my/39094/. 
232 Watson, Craig, and Samuel Senyo. “All-in-One Automated Microfluidics Control System.” HardwareX, vol. 6, The Authors, 2019, p. e00063, doi:10.1016/j.ohx.2019.e00063. 
233 Weng, Lindong. “IVF-on-a-Chip: Recent Advances in Microfluidics Technology for In Vitro Fertilization.” SLAS Technology, vol. 24, no. 4, 2019, pp. 373–85, doi:10.1177/2472630319851765. 
234 West, John B. “Historical Perspectives: Physiology in Microgravity.” Journal of Applied Physiology, vol. 89, no. 1, 2000, pp. 379–384., doi:10.1152/jappl.2000.89.1.379.   
235 Whitesides, George M. “The Origins and the Future of Microfluidics.” Nature, vol. 442, 2006, pp. 368–73, doi:10.1038/nature05058. 
236 Wilson, Edward, and Robert W. Mah. Centrifuge Autobalancing and FDIR. 2003, https://ntrs.nasa.gov/search.jsp?R=20050241785. 
237 Wilson, Mike R., et al. “Advanced Manufacturing of Flexible Oscillating Heat Pipes for Next-Generation Thermal Straps.” 47th International Conference on Environmental Systems, no. 71, Texas Tech University Library, 2017, https://ttu-ir.tdl.org/handle/2346/72902. 
238 Wing, P C, Tsang, I K, Susak, L, Gagnon, F, Gagnon, R and Potts, J E. “Back pain and spinal changes in microgravity..” The Orthopedic clinics of North America 22.2, 1991, pp. 255-262., ISSN 0030-5898.  
239 Wong, Kai Mee, et al. “Cryopreservation of Human Embryos and Its Contribution to in Vitro Fertilization Success Rates.” Fertility and Sterility, vol. 102, no. 1, Elsevier Inc., 2014, pp. 19–26, doi:10.1016/j.fertnstert.2014.05.027. 
240 Wrixon, A. D. “New Recommendations from the International Commission on Radiological Protection – A Review.” Physics in Medicine and Biology, vol. 53, no. 8, 2008, doi:10.1088/0031-9155/53/8/R01. 
241 Wu, Changli, Guo, Xinzheng, Wang, Fang, Li, Xiaoshuang, Tian, X Cindy, Li, Li, Wu, Zhenfang and Zhang, Shouquan. “Simulated microgravity compromises mouse oocyte maturation by disrupting meiotic spindle organization and inducing cytoplasmic blebbing..” PloS one 6.7, 2011, ISSN 1932-6203, https://dx.doi.org/10.1371/journal.pone.0022214 
242 Yamada, Kazuhiko, et al. “Development of Flare-Type Inflatable Membrane Aeroshell for Reentry Demonstration from LEO.” Aerodynamic Decelerator Systems Technology Conferences, 2015, pp. 1–10, doi:10.2514/6.2015-2167. 
243 Yamada, Tetsuya, et al. “Reentry of Hayabusa Sample Return Capsule and Post-Flight Analysis of the Recovered Heatshield.” 42nd AIAA Thermophysics Conference, vol. 10, 2011, pp. 11–14, doi:10.2514/6.2011-3322. 
244 Yang, Hui, et al. “Micro-Optical Components for Bioimaging on Tissues, Cells and Subcellular Structures.” Micromachines, vol. 10, no. 6, 2019, doi:10.3390/mi10060405. 
245 Yang, Jianqun, et al. “Effects of Multilayer and Multimaterial Structures on Space Proton Radiation Protection.” Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, vol. 365, no. 2015, Elsevier B.V., 2015, pp. 352–56, doi:10.1016/j.nimb.2015.08.054. 
246 Yano, Sachiko, et al. “Excellent Thermal Control Ability of Cell Biology Experiment Facility (CBEF) for Ground-Based Experiments and Experiments Onboard the Kibo Japanese Experiment Module of International Space Station.” Biological Sciences in Space, vol. 26, no. 0, 2012, pp. 12–20, doi:10.2187/bss.26.12. 
247 Young, Edmond, and David Bebbe. “Fundemental of Cell Culturing in Microfludiic Devices.” Chemical Society Reviews, vol. 39, no. 3, 2010, pp. 1036–48, doi:10.1038/jid.2014.371.